skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Kerr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mura, Cameron (Ed.)
    Machine learning (ML) is increasingly being used to guide biological discovery in biomedicine such as prioritizing promising small molecules in drug discovery. In those applications, ML models are used to predict the properties of biological systems, and researchers use these predictions to prioritize candidates as new biological hypotheses for downstream experimental validations. However, when applied to unseen situations, these models can be overconfident and produce a large number of false positives. One solution to address this issue is to quantify the model’s prediction uncertainty and provide a set of hypotheses with a controlled false discovery rate (FDR) pre-specified by researchers. We propose CPEC, an ML framework for FDR-controlled biological discovery. We demonstrate its effectiveness using enzyme function annotation as a case study, simulating the discovery process of identifying the functions of less-characterized enzymes. CPEC integrates a deep learning model with a statistical tool known as conformal prediction, providing accurate and FDR-controlled function predictions for a given protein enzyme. Conformal prediction provides rigorous statistical guarantees to the predictive model and ensures that the expected FDR will not exceed a user-specified level with high probability. Evaluation experiments show that CPEC achieves reliable FDR control, better or comparable prediction performance at a lower FDR than existing methods, and accurate predictions for enzymes under-represented in the training data. We expect CPEC to be a useful tool for biological discovery applications where a high yield rate in validation experiments is desired but the experimental budget is limited. 
    more » « less
  2. Abstract The effective design of combinatorial libraries to balance fitness and diversity facilitates the engineering of useful enzyme functions, particularly those that are poorly characterized or unknown in biology. We introduce MODIFY, a machine learning (ML) algorithm that learns from natural protein sequences to infer evolutionarily plausible mutations and predict enzyme fitness. MODIFY co-optimizes predicted fitness and sequence diversity of starting libraries, prioritizing high-fitness variants while ensuring broad sequence coverage. In silico evaluation shows that MODIFY outperforms state-of-the-art unsupervised methods in zero-shot fitness prediction and enables ML-guided directed evolution with enhanced efficiency. Using MODIFY, we engineer generalist biocatalysts derived from a thermostable cytochromecto achieve enantioselective C-B and C-Si bond formation via a new-to-nature carbene transfer mechanism, leading to biocatalysts six mutations away from previously developed enzymes while exhibiting superior or comparable activities. These results demonstrate MODIFY’s potential in solving challenging enzyme engineering problems beyond the reach of classic directed evolution. 
    more » « less
  3. Abstract MotivationDespite the advances in sequencing technology, massive proteins with known sequences remain functionally unannotated. Biological network alignment (NA), which aims to find the node correspondence between species’ protein–protein interaction (PPI) networks, has been a popular strategy to uncover missing annotations by transferring functional knowledge across species. Traditional NA methods assumed that topologically similar proteins in PPIs are functionally similar. However, it was recently reported that functionally unrelated proteins can be as topologically similar as functionally related pairs, and a new data-driven or supervised NA paradigm has been proposed, which uses protein function data to discern which topological features correspond to functional relatedness. ResultsHere, we propose GraNA, a deep learning framework for the supervised NA paradigm for the pairwise NA problem. Employing graph neural networks, GraNA utilizes within-network interactions and across-network anchor links for learning protein representations and predicting functional correspondence between across-species proteins. A major strength of GraNA is its flexibility to integrate multi-faceted non-functional relationship data, such as sequence similarity and ortholog relationships, as anchor links to guide the mapping of functionally related proteins across species. Evaluating GraNA on a benchmark dataset composed of several NA tasks between different pairs of species, we observed that GraNA accurately predicted the functional relatedness of proteins and robustly transferred functional annotations across species, outperforming a number of existing NA methods. When applied to a case study on a humanized yeast network, GraNA also successfully discovered functionally replaceable human–yeast protein pairs that were documented in previous studies. Availability and implementationThe code of GraNA is available at https://github.com/luo-group/GraNA. 
    more » « less